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Abstract. The indices in the distributed storage systems manage the
stored data and support diverse queries efficiently. Secondary index, the
index built on the attributes other than the primary key, facilitates a vari-
ety of queries for different purposes. In this paper, we propose U2-Tree,
a universal distributed secondary indexing scheme built on cloud storage
systems with tree-like topologies. U2-Tree is composed of two layers, the
global index and the local index. We build the local index according to
the local data features, and then assign the potential indexing range of
the global index for each host. After that, we use several techniques to
publish the meta-data about local index to the global index host. The
global index is then constructed based on the collected intervals. We take
advantage of the topological properties of tree-like topologies, introduce
and compare the detailed optimization techniques in the construction of
two-layer indexing scheme. Furthermore, we discuss the index updating,
index tuning, and the fault tolerance of U2-Tree. Finally, we propose
numerical experiments to evaluate the performance of U2-Tree. The uni-
versal indexing scheme provides a general approach for secondary index
on data centers with tree-like topologies. Moreover, many techniques and
conclusions can be applied to other DCN topologies.

Keywords: Two-Layer index · Cloud storage system · Data center
network

1 Introduction

Nowadays, the unprecedented development of cloud storage systems is drawing
attentions from both academia and industry. The efficient queries in distributed
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cloud systems require the construction of indices. Other than the index based on
the primary key in the key-value storage, we need the secondary indices on other
attributes for various applications. However, a centralized secondary index both
consumes huge volume of storage space and causes the issue of access congestion.
Therefore, a common design is to distribute the index on servers, and organize
them as a two-layer indexing scheme.

The two-layer index consists of a global layer and a local layer. The global
index collects the information published from the local indices as an overlay.
When processing queries, the host will first request the information on the
global index hosts, and further forward the request to the corresponding local
index host. The two-layer indexing scheme efficiently solve the problem of the
secondary index construction. Nonetheless, current researches on the two-layer
indexing [4,15,21–23] are mainly concentrated on the Peer-to-Peer (P2P) net-
work, whereas nowadays a typical cloud storage system is organized as a data
center. Data Center Networks (DCNs) [1,9–12,18–20], the backbone of data cen-
ters, have the feature of scalability, reliability, and energy efficiency. The DCNs
differ from P2P networks due to their specific physical topologies. Hence, we
should take advantage of DCN topologies to design an efficient two-layer index-
ing scheme. However, there are few researches [7,8,21] regarding such design.
Besides, each of them focuses on only one specific DCN topology. Consequently,
we are motivated to design a general two-layer indexing scheme based on the
properties of DCNs.

In this paper, we consider a series of DCNs with tree-like topologies. Nowa-
days, all commercial DCNs adopt the tree-like topologies. Moreover, they provide
high bandwidth, satisfying fault tolerance, and regular structures. Therefore, we
take advantage of the tree-like topologies to build an efficient secondary index.
We first introduce some representative tree-like topologies including Fat Tree [1],
Aspen Tree [20], and VL2 [9], and then extend our discussion to general tree-
like topologies. Finally, we construct a Universal TWO-layer indexing built on
TREE-like topologies named U 2 -Tree.

We divide the construction of U2-Tree into 4 steps. The first step is to build
the local index on each host depending on the local data features. Next, we
assign the potential indexing range of each host based on the characteristic of
data distribution. We then publish the information about local index to the
corresponding global index host. Finally, the global index is constructed accord-
ing to the collected information. We explain the process of each step in detail,
and introduce several optimization techniques for them. We further compare the
performance and applicable conditions of techniques.

Moreover, we discuss the effects of two index update types, and explain the
situations of lazy and eager updates. We also compare and analyze different
index tuning schemes, and give the applicable scenarios. We then introduce the
re-convergence problem after the link failure based on the fault tolerance of
topologies. Finally, we validate our universal indexing design and compare dif-
ferent techniques by simulation results.

The contributions of this paper are: We propose a universal indexing scheme
U2-Tree utilizing the advantages of tree-like DCN topologies. We explain and
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compare the detailed implementations in index construction and maintenance.
More importantly, many techniques and conclusions can also be extended to
provide a general platform for secondary index construction on DCNs.

The rest of this paper is organized as follows. Section 2 briefly introduces the
relate work. Section 3 is an illustration and comparison of tree-like topologies.
Section 4 thoroughly explains the construction processes of U2-Tree. Section 5
is an discussion about index updating, tuning, and fault tolerance. Section 6
proposes the processing approaches for various types of queries. Section 7 evalu-
ates the performance of techniques in U2-Tree. Finally, Sect. 8 summarizes and
concludes the previous contents.

2 Related Work

The cloud storage systems are developing rapidly with the explosive growth of
data. Massive data sets are distributed on several nodes, and nodes are con-
nected to supply a fast access to non-relational databases. Google’s Bigtable [3],
Amazon’s Dynamo [5], Apache Cassandra [13] are well-known examples of com-
mercial distributed systems.

Typically, a cloud storage system is organized as a data center. Data center
network (DCN) interconnects all the resources, such as storage and computa-
tional data, of a data center. Therefore, DCN architecture plays a significant
role. DCN topologies can be categorized into switch-centric DCNs and server-
centric DCNs. High bandwidth and better fault tolerance are the main features
of switch-centric DCNs including Fat Tree [1], Aspen Tree [20], and Jellyfish [19],
etc. Server-centric DCNs, such as Bcube [10], Dcell [11], and HCN [12], are of
high scalability and relatively lower cost.

The design of two-layer index maximizes the topological benefits. Previous
two-layer indexing designs [4,15,21–23] are mainly built on P2P networks. The
indexing schemes regarding the features of DCNs are rarely referred. The multi-
dimensional indices RT-HCN [14] and RB-Index [7] integrated HCN and Bcube
topologies and R-tree index. The FT-Index [8] leveraged interval tree and B+-
tree on Fat Tree topology.

3 Data Centers with Tree-Like Topologies

Numerous kinds of DCN architecture designs are proposed in the last ten years.
The connection of switches and servers varies among different architectures, and
thus they have distinct properties, such as scalability, fault tolerance, energy
efficiency, etc.

We mainly focus on tree-like topologies, a category of switch-centric DCNs.
In the traditional DCN architecture, the widely used three-tier, multi-rooted
tree is an example of tree-like topologies. Usually, the tree-like topologies adopt
such multi-rooted structure, and divide the switches into multiple layers. The
servers are connected to the bottom layer of switches. The disadvantages of tra-
ditional three-tier DCNs include limited bandwidth, poor scalability, and high
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Table 1. List of notations

Notation Definition Notation Definition

n Number of switch layers ci Fault tolerance parameter of Li

k Port number of switches C = 〈c2, · · · cn〉 Fault tolerance vector

Li Tree layer i [L, U) Boundary of data range

hi Host i pri Potential indexing range of hi

H Number of hosts K Total number of keys

S Total number of switches β Data density

Table 2. Tree-like topologies

Topology Structure and features

Fat tree [1] Layer: Three layers of identical k-port switches

Connection: Half ports of an edge switch connect to servers,

and others to aggregation switches. Remaining ports of an

aggregation switch connect to core switches. All k ports of a

core switch connect to aggregation switches

Expansion: Can be extended to arbitrary levels adopting such

connection rule

Example: Fig. 1 shows a 3-layer, 4-port Fat Tree topology

Aspen Tree [20] Layer: Arbitrary layers of switches

Connection: Based on the connection rule of Fat Tree. Adding

redundant links between layers to reduce the re-convergence

time after link failures

Diversity: A vector C is used to identify different n-level,

k-port Aspen Trees

Example: Fig. 2 shows two 4-layer, 6-port Aspen Trees with

different C

Virtual Layer 2 (VL2) [9] Layer: Three layers of switches

Connection: Based on the connection rule of Fat Tree

Specification: A clos topology between DI -port intermediate

switches and DA-port aggregate switches enables an 1:1

over-subscription

Example: Fig. 3 shows an example of VL2 architecture

Portland [18] Connection: Similar to Fat Tree

Specification: A fabric manager for better fault tolerance and

multicast

cost. Therefore, there are several novel tree-like topologies presented in recent
years aiming to solve these problems. On one hand, the individual specifications
enable different topologies to have their own characteristics. On the other hand,
we can utilize the regular structure these topologies shared to build our universal
two-layer indexing scheme. In this section, we will introduce some representa-
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Fig. 1. An example of DCN with a 3-layer, 4-port Fat Tree topology
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Fig. 2. Examples of DCNs with 4-layer, 6-port Aspen Tree topologies

tive tree-like topologies, including Fat Tree [1], Aspen Tree [20], VL2 [9], and
Portland [18], and make a brief comparison among them.

We use k to denote the port number of switches, and n to denote the number
of switch layers in tree-like topologies. In this paper, we refer to the switch
layers in the three-layer trees as edge layer, aggregate layer, and core layer from
bottom to top. Alternatively, we also define them as L1, L2, · · ·, Ln in trees with
arbitrary layers. Table 1 lists the symbols and their definitions. We will introduce
more notations in the following texts. We then give a brief description of popular
tree-like topologies in Table 2.



486 Y. Liu et al.

L3

L2

L1

L0

Fig. 3. An example of DCN with a 3-layer VL2 architecture

Table 3. Comparison of tree-like topologies

Topology Three-tier Fat tree VL2 Aspen tree

H kn kn

2n−1
5k2 kn

2n−1 ·
n∏

j=2

cj

S
kn − 1

k − 1

(

n − 1

2

)

· kn−1

2n−2

k2 + 6k

4

(

n − 1

2

)

· kn−1

2n−2 ·
n∏

j=2

cj

Degree 1 1 1 1

Diameter 2 log2 H 2 log2 H 2 log2 H 2 log2 H

BiW 1
H

2

H

2

H

2

BoD
k − 1

k2
· H2 H H H

From previous descriptions we can find that tree-like topologies adopt similar
structures. Actually, the Fat Tree is a special instance of Aspen Trees in terms
of topology. We define the maximal set of Li switches connecting to the same
set of Li−1 switches as a pod [20]. Then we can quantify the fault tolerance of
level i ci as the number of links from an Li switch s to each Li−1 pod that s
connects to. The fault tolerance vector C = 〈c2, c3, · · · , cn〉 since c1 is always 1.
C = 〈1, 1, · · · , 1〉 for Fat Tree, while the vector is arbitrary for Aspen Tree.

C affects the fault tolerance of the tree, which can be reflected in the density
of links. Fat Tree has a poor fault tolerance compared to Aspen Tree and VL2,
while Fat Tree supports the most number of hosts when n and k are determined.
However, the topology of VL2 is a “best” choice for both better fault tolerance
and more supported hosts [20].

Other than the fault tolerance, we can compare tree-like topologies from
several aspects. We first compare the maximum number of supported hosts H,
and the total number of switches S in the same scale among topologies. We also
compare the degree, the number of links from each host to switches, and the
diameter, the longest path length of any pairs of hosts, of each topology. Finally,
we compare the bisection bandwidth (BiW), the minimal possible bandwidth
between the segmented pair of the network, and the bottleneck degree (BoD),
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the maximal number of flows over a single link under an all-to-all communication
model. The comparison results are shown in Table 3.

4 The U2-Tree

The universal two-layer indexing scheme U2-Tree consists of two main parts, the
local index and the global index. In the first stage of the index construction,
each host builds the local index based on its local data. Then, the whole data
range is partitioned into small ranges that each global index is responsible for.
After that, the local host publishes some information about the data and local
index to the corresponding global index host. Finally, the global index host will
collect the received information and construct the global index. Each host in the
U2-Tree will maintain a portion of local index and global index. The outline of
the construction process is shown in Algorithm 1. Note that for each stage, the
construction of index on all hosts can be executed in parallel.

Algorithm 1. U2
-Tree Construction (at hi side)

Input: The data on local host
Output: The universal two-layer index U2-Tree

1 Construct local index on the given key attribute // Local index construction

2 Scan data and calculate pri.n, pri.c, pri.l, pri.u // Potential indexing range

3 Assign pr′
i ⊆ [L, U) by Eqs. 2 and 4

4 Select nodes in the local index // Publishing to global index

5 foreach selected nodes do
6 Publish (range, ip, pos) to the corresponding global index host

7 Collect all information published from hj // Global index construction

8 Construct the global index based on the information

4.1 Local Index Construction

In a cloud system, the data stored on each local host is of extremely large size.
Thus, it is necessary to build a local index on each host so as to reduce the
searching time and I/O cost. Typically, B-tree and B+-tree, or other search tree
structures based on the storage format of data, can be used to build the local
index. The nodes in these trees normally have two or more children and thus
support efficient query, insertion, and deletion.

The keys we store in the index are non-negative integers, and the integers
are unique among hosts, i.e. for each key, it is stored in at most one host. If the
keys are not numerical, we can use hash or other techniques to transfer them
into integers.

4.2 Potential Indexing Range Assignment

After the construction of local indices, we will determine the potential indexing
range of each host. The potential indexing range pri is the data range that each
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global index host hi represents. The pri does not intersect with other prj (i �= j),
while the union of all the potential indexing ranges

⋃
i pri will be the whole data

range [L,U). In this way, each point in the range will correspond to exactly one
responsible global index host.

In the index publishing stage, each local host will publish some information
about a certain data range to the corresponding global index according to the
potential indexing range assignment. Besides, we will also query the data using
a portion of global index based on the potential indexing range. Therefore, it
is beneficial to assign the potential indexing range in a way that the keys are
partitioned evenly on each global index host.

It is quite easy if the data are distributed uniformly on the range. If so, the
approach proposed in [8] can be used. We just partition the whole range into
H subranges with equal length, and assign them to the corresponding hosts in
ascending order, i.e.

pri =
[

L + i · U − L

H
,L + (i + 1) · U − L

H

)

, 0 ≤ i ≤ H − 1. (1)

Otherwise, we need to handle the skewed data distributed on the range. The
goal of the assignment is to balance the number of keys published to each global
index host. Assume the j-th key distributed on the local host i in ascending order
is denoted as kj

i . Then the keys on host hi are Ki = {kj
i | k0

i < k1
i < . . . < k

|Ki|
i }.

If we sort the keys on all hosts and get kj0
i0

< kj1
i1

< . . . k
jK−1
iK−1

, where K = |⋃i Ki|,
we can assign

pr′
i =

⎧
⎨

⎩

[L, b1) , i = 0,
[bi, bi+1) , 1 ≤ i ≤ H − 2,
[bH−1, U) , i = H − 1,

(2)

where bi = k
j�iK/H�
i�iK/H� . In this way, the number of keys published to each host is

almost the same. However, the ideal method is not practical in that we must
collect all the keys on hosts and sort them in ascending order. Now that the data
stored in a single host are already massive, it is both storage and time intolerable
to achieve such kind of task.

Nevertheless, we can use an approximate method to balance the keys. Zhang
et al. [24] offered a Piecewise Mapping Function (PMF) that can solve the prob-
lem. We first use potential indexing range described in Eq. (1) to divide the whole
range [L,U) into H subranges, and count the number of keys distributed on each
subranges. Moreover, we record the maximum key pri.u and the minimum key
pri.l in each subrange. Note that this step can be done in parallel, and costs only
linear time. We denote the count on each subrange as pri.n, and the cumulative
count, i.e. the number of keys smaller than the right boundary of each subrange,
as pri.c. Clearly, pri.c =

∑
j≤i prj .n. Thus we can get an approximate mapping

from x ∈ pri ⊆ [L,U) to the key kjm
im

where

m =

⎧
⎪⎨

⎪⎩

pri−1.c, x < pri.l,
pri.n

pri.u − pri.l
(x − pri.l) + pri−1.c, pri.l ≤ x ≤ pri.u,

pri.c, x > pri.u.

(3)
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Conversely, the potential indexing range assignment can be given by Eq. (2),
where

bi =

⎧
⎪⎨

⎪⎩

prj .u − prj .l

prj .n

(
iK

H
− prj−1.c

)

+ prj .l, prj−1.c <
iK

H
< prj .c,

1
2

(prj .u + prj+n+1.l) ,
i

H
= prj .c = . . . = prj+n.c.

(4)

As an example, we consider the 15 prime keys {2, 3, 5, . . . , 43, 47} distributed
on [0, 50). If we divide them into 5 subranges using Eq. (1), the count of keys
in each subranges will be 4, 4, 2, 2, 3, with a variance of 0.8. However, Eqs. (2)
and (4) can balance the counts perfectly, as shown in Table 4.

Table 4. An example of potential indexing range assignment

i pri pri.n pri.c pri.l pri.u bi pr′
i pr′

i.c

0 [0,10) 4 4 2 7 - [0,5.75) 3

1 [10,20) 4 8 11 19 5.75 [5.75,15) 3

2 [20,30) 2 10 23 29 15 [15,26) 3

3 [30,40) 2 12 31 37 26 [26,39) 3

4 [40,50) 3 15 41 47 39 [39,50) 3

In practice, we assign range for several times to achieve a better perfor-
mance. Algorithm 2 shows the procedure of potential indexing range assignment
for multiple times.

Algorithm 2. Potential Indexing Range Assignment

Input: Original potential indexing range assignment pri and assignment times
Output: New assignment pr′

i

1 foreach t ∈ [1, times] do
2 foreach i ∈ [0, H) do // Estimate data distribution

3 Calculate pri.n, pri.c, pri.l, pri.u

4 foreach i ∈ [1, H) do // Calculate range boundaries

5 Calculate bi by Eq. 4

6 foreach i ∈ [0, H) do // Update potential indexing range

7 Calculate pr′
i by Eq. 2

8 pri ← pr′
i

9 return pr′
i

4.3 Publishing Scheme

After assigning the potential indexing range, each host will publish some infor-
mation about the local index to corresponding global index hosts. Since the
nodes in the local index typically store keys as the subtree separation values, we
will publish the intervals of keys which indicate the possible keys that exist in a
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subtree of the node. Moreover, we will also publish the ip address of the host and
the position of the node stored in the host. Therefore, a tuple of (range, ip, pos)
can be published to the global index host to locate the data on the local host if
the range of query intersects with the range of node.

However, publishing in such way is plausible but not efficient enough because
of the false positives. On one hand, there is no false negative for query, since all
possible keys in the subtrees of the nodes are included in the published intervals.
On the other hand, there may be many false positives for query since we only
publish the minimum and maximum boundaries of the keys. The publishing
scheme significantly reduces the size of published information, while it causes
the problem of false positives. The false positives will directly increase the hops
needed in queries.

Gap Elimination (FT-Gap) and Bloom Filter (FT-Bloom), two methods pro-
posed in [8], can efficiently solve the problem. The false positives can be consid-
ered as the gaps in the intervals. For example, if the keys stored in a node are
{4, 7, 9, 15, 17}, we will publish an interval [4,17]. The queries in the “gaps”, for
instance, [10,14] will cause false positives. Gap elimination will remove several
biggest gaps in the interval and publish the remaining segments. Bloom filter
uses hash functions to map the keys in the intervals into a bit array with all
0’s and set the corresponding positions to 1. In the query phase, we will hash
the query key to check whether the bits are 1. Both methods guarantee no false
negative and moderate false positives with tolerable additional space.

4.4 Global Index Construction

The global index is on top of the local index logically. The global index collects
the meta-data information published by the local hosts, and will arrange them
sensibly to facilitate efficient query. Wu et al. [22] used conventional table or list
to store the information. Instead, we can also construct more efficient tree data
structures to index the interval ranges. Interval tree, segment tree, and priority
search tree are common data structures for storing intervals and supporting
various queries.

Interval tree [6,16] uses the median of the endpoints of the intervals to sep-
arate the intervals into three sets: intervals intersecting with the median, those
lying in the left of it, and those lying in the right. The subtrees are built recur-
sively on the last two sets.

Segment tree [2] decides the atomic intervals based on the endpoints of the
intervals. Each node corresponds to an atomic interval or the union of some
atomic intervals. An interval is stored in the nodes whose union is exactly the
range of the interval.

Priority search tree [17] stores two-dimension data in the nodes. The tree is
a heap for one dimension and also a binary search tree for the other dimension.
The two dimensions correspond to the lower bound and the upper bound for
storing intervals.

For n intervals in total, interval tree and priority search tree will cost O(n)
storage, while segment tree will cost O(n log n) storage. The construction times
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of the three trees are all O(n log n). Moreover, the point query times of them
are all in O(log n + k), where k is the number of reported intervals. Compared
with scanning the lists, these structures can significantly reduce the searching
time on global index. Typically, the interval tree and priority search tree are
preferred to segment tree, while the segment tree can be modified to support
multi-dimensional query which is not applicable to the others.

5 Update and Maintenance

5.1 Index Updating

The insertion and deletion of data after the index construction will cause the
updating of index. The updates in the local index should be executed immedi-
ately in order to guarantee the correctness of index. However, since sending the
updates to the global index causes additional network cost, a common method
is to divide the updates into lazy ones and eager ones [22]. The lazy updates
are those that may increase false positives while not affect the correctness. The
eager updates will cause false negatives and thus the index fail to provide correct
results. Therefore, we forward the eager updates immediately to the global index
host while do a batch update for lazy updates.

The merges and splits of local index nodes that change previous pos of the
nodes are considered to be eager updates. Any insertions that enlarge the ranges
of local index nodes or lie in the eliminated gaps for FT-Gap will also trigger
the eager updates. Moreover, for FT-Bloom, the insertions that change the bit
array of bloom filter are also eager updates. On the contrary, the changes that
do not affect the published information are lazy updates that can be issued in a
batch way.

Frequent updates in trees for global index will cause the unbalance problem.
Therefore, we can maintain an additional updates index to store the updated
intervals. After a certain time period or when the size of the updates index is
too large, we destroy the original tree and reconstruct a new one.

5.2 Index Tuning

When we select the intervals (nodes) in the local index to build the global index,
we have multiple choices. For each leaf node, we should select at least one node in
the path from the root to it. Yet it is enough that we select only one node in this
path. Moreover, we can reduce the update cost by selecting only one node. The
two properties, index completeness and unique index, guarantee the correctness
of the index selection. However, even among these right selections, we still have
different choices. For example, we can select the nodes near the leaves in order
to reduce false positives. On the contrary, the nodes near the root are unlikely to
be split or merged, and the update cost is reduced. There are some index tuning
approaches to balance the false positives and update cost.
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Top-Down Approach. The top-down approaches focus on false positives of
index. For example, we only select the nodes that are under a certain level
(namely l) to publish. For sibling nodes under l, we select a portion to publish
directly, while recursively select the descendants of other s frequently accessed
nodes to publish. The access times can be counted incrementally, while the tun-
ing is updated in batch. The top-down approaches can effectively reduce false
positives, with a limited size of published nodes. It is especially suitable for the
indices that support skewed query, but are seldom updated.

Bottom-Up Approach. The more sophisticated bottom-up approaches con-
sider cost models. The cost model for each node consists of the cost of query
processing and index maintenance. Wang and Wu et al. [21–23] gave different
cost models based on the type of data and the network feature. The goal of the
index tuning is to select a set of nodes with the least total cost. Therefore, we
calculate the cost of a node and its children, and select the one(s) with less cost.
Recursively doing the same job until we meet the root in a bottom-up approach,
we can get the optimal indexing set. The calculation of the cost and the selection
of nodes are both executed in a batch way.

5.3 Fault Tolerance

In Sect. 3, we mentioned that VL2 and Aspen Tree introduce additional links
between some layers. These links can help the system react to link failures more
conveniently and rapidly. Walraed-Sullivan et al. [20] proposed the Aspen Reac-
tion and Notification Protocol (ANP). The notifications are sent upwards to
ancestors located near to a failure with ANP, rather than a global re-convergence.
Suppose there is a failed link between Li and Li+1, the global re-convergence
can be avoided so that the convergence time is shortened as long as the failed
link occurs along the upward segment, or cj > 1(j ≥ i) along the downward
segment. For an n-level tree, the supported hosts are decreased by half if cn = 2
while the convergence time can speed up 70 ∼ 80% compared to Fat Tree. VL2
just utilizes the property to gain a better fault tolerance and scalability.

6 Query Processing

U2-Tree can process kinds of queries, such as point query, range query, and k-NN
query.

The range query in U2-Tree is similar to most other two-layer indexing
schemes. The query host first find out the global index hosts with the potential
indexing range intersecting with the queried range. The query is then forwarded
to search on the global indices. After that, possible hosts storing the data are
returned. Since the hosts with more similar ip are connected within less hops, we
sort the possible local index hosts by ip and visit them one by one in sequence.
Finally, we collect all the data intersecting with the range on these local indices
and forward the results to the query host.
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The point query is a special case of range query when the bounds of range
are equal. The difference are that (1) we only search on one global index host,
(2) we can halt the search on the local index hosts if we have retrieved the data.

The k-nearest neighbours (k-NN) query returns the top-k nearest results to
the key given the query (key, k). We define the density of data β as

β =
K

U − L
, (5)

where K is the total number of keys on all hosts. Actually, we have already
counted K in the potential indexing range assignment and K = prH−1.c. There-
fore, we can use β to estimate the ranges of k nearest results and do the
range query. We will first query the range [key − γk/β, key + γk/β), where
γ is a scaling parameter typically slightly large than 0.5. If we can find out
more than k results in this range, we simply select the k nearest ones and
return. Otherwise, we do range query on [key − (i + 1)γk/β, key − iγk/β) and
[key + iγk/β, key + (i + 1)γk/β) continuously with increasing i by one for each
iteration until the number of results is greater or equal to k.

7 Performance Evaluation

We simulated the U2-Tree on different tree-like topologies in C++. We generated
the non-negative integers as keys randomly among the range [0, U). The keys in
the range are unique, while each possible key in the range does not necessarily
exist due to the data density (or existence probability) β = K/U . Table 5 shows
the experiment settings.

Table 5. Experiment settings

Parameter Value

Data density (β) 0.3, 0.8, 1

Upper bound of data (U) 500 K, 1 M, 2 M, 3 M

Host number (H) Depends on topology

Data distribution Uniform, Zipfian

We first evaluate the performance of the potential indexing range assignment
algorithm. The inconsistency of keys distributed on global index host is reflected
by the variance of the counts. The variance is defined as

V =
1
H

∑

i

pri.n. (6)

Therefore, we use Zipfian distribution data and compare the variance of counts.
In Fig. 4, the number of rounds means the result after such times of assign-
ment. From the figure we know that the variance significantly reduces after the
assignment. Moreover, the performance is better after more times of assignment.
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Fig. 4. Performance of potential indexing range assignment algorithm
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topologies

The data with different data densities will result in similar variances eventually.
Figure 5 shows the key counts on each host after each time of assignment when
U = 3M. The darkness of color shows the number of keys on corresponding
hosts. We can find that initially the distribution is extremely unbalanced, while
the counts vary a little among hosts after the assignments.

Figure 6 shows the average network cost on different 4-level, 6-port tree-
like topologies. The network cost is defined as the hop counts on networks for
each point query. The topology with C = 〈1, 1, 1〉 is a Fat Tree, while others
are various Aspen Trees. We can learn from the figure that the average hops
decreases as the fault tolerance increases. However, we must point out that it
does not mean that Aspen Trees are superior, since the number of hosts also
reduces as C increases. The data density β also has an effect on the network
cost, because if the queries key does not exist in the data range, the query will
be forwarded to all possible local index host, instead of halting halfway.

Finally, we compare the performance of different global indices. We record the
number of stored and visited intervals in index construction and query process-
ing. The result is shown in Fig. 7. From Fig. 7(a), the number of stored intervals
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Fig. 7. Comparison of global index structures

for priority search tree and interval tree is similar to the traditional list, while
segment tree consumes much more space. However, the segment tree can be built
faster in practice. Figure 7(b) shows the average number of visited intervals in
logarithm scale. The visited intervals of list grow linearly with the total number
of keys. On the contrary, the performances of three trees are similarly fine and
quite stable with the increasing of stored intervals.

8 Conclusion

In this paper, we proposed the U2-Tree, a universal distributed secondary index
scheme with tree-like DCN topologies. We took the topological benefits to build a
two-layer indexing. We explained and compared the techniques in the index con-
struction in detail. We also discussed the index maintenance problems including
updating, tuning, and fault tolerance. The U2-Tree can support several types of
query processing efficiently. The experiment evaluated the performance of U2-
Tree, and provided further conclusions about different techniques. In a broad
sense, the universal indexing scheme can even be applied to other DCN topolo-
gies with proper modifications.
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